
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2008; 56:941–950
Published online 4 July 2007 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.1566

Divergence-free discontinuous Galerkin schemes for the Stokes
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SUMMARY

We show that recently studied discontinuous Galerkin discretizations in their lowest order version are very
similar to the marker and cell (MAC) finite difference scheme. Indeed, applying a slight modification,
the exact MAC scheme can be recovered. Therefore, the analysis applied to the DG methods applies to
the MAC scheme as well and the DG methods provide a natural generalization of the MAC scheme to
higher order and irregular meshes. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Divergence-conforming discontinuous Galerkin schemes recently suggested by Cockburn, Kan-
schat and Schötzau (see [1, 2], abbreviated as CKS below) generate pointwise divergence-free
solutions to the incompressible Navier–Stokes equations without using a solenoidal basis; there-
fore, they are suitable for computations in three dimensions and on domains with complicated
topology. While we were concerned with higher order approximations in [2], in this article it is
shown that the version employing the lowest order Raviart–Thomas space on rectangular meshes
is algebraically equivalent to the marker and cell (MAC) scheme of Harlow and Welch (see [3]).

The MAC scheme was introduced in 1965 as a stable finite difference scheme for incompressible
flow problems. Nevertheless, its error analysis was presented only in 1992 (see [4, 5]) by trans-
forming it to a finite volume scheme. Further results have been obtained by studying finite ele-
ment methods yielding the same finite difference stencil. First, an analogy to mixed finite element
methods for the vorticity–velocity–pressure formulation with divergence-conforming elements was
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942 G. KANSCHAT

already found by Girault and Lopez (see [6]) in 1996. There, it was shown that the MAC scheme
can be recovered by using a special numerical quadrature.

Han and Wu (see [7]) presented a finite element formulation of the MAC scheme using different
staggered finite element meshes and obtained optimal energy error estimates for the velocity and
pressure. Nevertheless, extension of this method to higher order elements suffers from the difficulty
to handle three different meshes in two dimensions. Furthermore, a numerical quadrature rule is
required to obtain the stencil of the MAC scheme.

The interest in the MAC scheme is to some extend due to the fact that it lends itself to
the construction of efficient solvers for the discrete problem (see [8–11]). For that reason, a
generalization of the MAC scheme to higher order and more general meshes is desirable.

Once the algebraic equivalence of the MAC scheme and the Hdiv(�)-conforming DG scheme
is established, we exploit existing convergence results in order to derive estimates for the DG
scheme. On the other hand, the DG scheme lends itself to the construction of higher order versions
of the MAC scheme as well as the incorporation of locally refined meshes. Furthermore, it shows
a way to interpolate solutions obtained by the MAC scheme to obtain a pointwise divergence-free
function in Hdiv(�).

In the remainder of this article, we first review the MAC scheme and the most important
convergence result, followed by a description of the DG method. In Section 4, we show the
equivalence of the two methods.

2. THE MAC SCHEME AND THE STAGGERED GRID

The MAC scheme as presented in [3] uses different, staggered grids for the pressure and each
velocity component. In order to simplify the presentation, we assume the domain of computation is
�= (0, 1)2 that the mesh consists of n2 squares Ti j of size h = 1/n, numbered by index i = 1, . . . , n
in the x-direction and j = 1, . . . , n in the y-direction. Note that the MAC scheme naturally extends
to rectangular mesh cells and three-dimensional problems.

The distribution of degrees of freedom is shown in Figure 1. It shows the mesh cell Ti j with
the pressure variable associated with the cell center and the velocity variables associated with
the midpoints of the cell edges. We assign the coordinates xi j = (ti , t j )T to the cell centers.
Edge midpoints are offset in one direction and, therefore, are of the form xi−1/2, j = (ti−1/2, t j )T

and xi, j−1/2 for vertical and horizontal edges, respectively. The boundaries are at t1/2 = 0 and
tn+1/2 = 1. The spacing is ti+1 − ti = h. On this mesh, the gradient and divergence operators are
discretized by

�hx pi+1/2, j = 1

h
(pi j − pi+1, j ) (1)

�hy pi, j+1/2 = 1

h
(pi j − pi, j+1) (2)

∇h · ui j = 1

h
(ui+1/2, j − ui−1/2, j + vi, j+1/2 − vi, j−1/2) (3)

We see that the gradient maps cell centers to edge midpoints and the divergence vice versa. The
Laplacian of the velocity components in each point is approximated by the five-point stencil. For
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DGFEM AND MAC SCHEME 943

Figure 1. The placement of velocity and pressure values of the cell Ti j for the MAC scheme.

the velocity component u in the x-direction, this is

−�hui+1/2, j = �hxxui+1/2, j + �hyyui+1/2, j

�hxxui+1/2, j = 2ui+1/2, j − ui−1/2, j − ui+3/2, j

h2
(4)

�hyyui+1/2, j = 2ui+1/2, j − ui+1/2, j−1 − ui+1/2, j+1

h2

The Laplacian of the velocity component v in the y-direction is defined accordingly. At the Dirichlet
boundary, which coincides with the cell boundaries, the velocity nodes on the boundary are set to
zero. This only affects the normal velocities.

While this scheme has been widely used in applications (see for example [12]), it took until [4] to
obtain optimal error estimates for the vorticity and pressure. These were obtained by reinterpreting
the MAC scheme in terms of the covolume method, thus employing suitable interpolations of the
point values.

In [7], a finite element method related to the MAC scheme is presented. It uses separate
rectangular finite element meshes for the variables u, v and p, respectively. It yields the optimal
error estimates for u and p of the form

‖∇u − ∇uh‖ + ‖p − ph‖=O(h) (5)

Remark 2.1
An error estimate for the velocities in L2 follows from this results by standard duality arguments.
This result also implies

1

n

√∑
i j

((ui+1/2, j − u(ti+1/2, t j ))2 + (vi, j+1/2 − v(ti , t j+1/2))2) = O(h2) (6)

on uniform meshes.
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Since the velocities are discretized by bilinear finite elements, a quadrature rule must be applied
in order to obtain the five-point stencil of the MAC scheme. While this does not change the
properties of the equation in an essential way, it makes devising higher order methods more
difficult. Furthermore, a posteriori error estimates are more difficult to obtain.

3. THE DIVERGENCE-FREE DG METHOD

The discontinuous Galerkin discretizations of CKS type are based on Hdiv(�)-conforming finite
elements for the velocity. They were analyzed in [1, 2] for higher order spaces. Here, we want to
focus on the lowest order Raviart/Thomas space [13] RT0 and its matching piecewise constant
pressure space. In this space, the u-velocity is cellwise constant and discontinuous in the y-direction
and cellwise linear and continuous in the x-direction. The v-velocity is vice versa.

Let us introduce the Lagrange interpolation polynomials on [0, 1] and [tk−1/2, tk+1/2]
�+(t) = t, �−(t) = 1 − t

�+
k (t) =�+

(
t − tk−1/2

h

)
, �−

k (t) = �−
(
t − tk−1/2

h

)

In order to ensure continuity of the normal component of the velocities over edges, we choose
the values in edge midpoints as node values (see e.g. [14]). These are the support points for u and
v of the MAC grid in Figure 1. Using the basis functions, the velocity on the cell Ti j has the form

ui j (x, y) =
(
ui−1/2, j�

−
i (x) + ui+1/2, j�

+
i (x)

vi, j−1/2�
−
j (y) + ui, j+1/2�

+
j (y)

)
(7)

for (x, y) in the mesh cell Ti j .
On the boundary, we enforce the condition u · n= 0 strongly by restricting the finite element

space (see [2]). The boundary condition on the tangential component will be enforced weakly in
the momentum equation (10).

The discrete continuity equation is written in weak form as

bh(u, q) :=
∫

�
∇ · u q dx = 0 ∀q ∈ Qh (8)

where Qh is the space of cellwise constant pressure functions with mean value zero.
Integrating the form bh(·, ·) by parts on each cell, we obtain the discrete gradient operator

applied to p:

bh(�, p) =∑
Ti j

(
−
∫
Ti j

� · ∇ p dx +
∫

�Ti j
� · np dx

)
= ∑

E∈EI

∫
E

� · [[pn]] dx (9)

where EI is the set of all interior edges.
It remains to consider the Laplacian in the momentum equation. In [2], feasibility of the CKS

discretization for any stable consistent and self-adjoint DG scheme for the Laplacian is proven;
even if we did not consider the case RT0 there, the arguments are sufficiently abstract to extend to
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this case. Let us take the interior penalty method applied to each velocity component separately
to start with. We choose �= (�, 0)T.

ah(u, �) = ah(u,�) =∑
Ti j

∫
Ti j

∇u · ∇� dx + jI (u, �) + jD(u, �)

− ∑
E∈EI

∫
E
({{∇u}}[[�n]] + [[un]]{{∇�}}) ds

− ∑
E∈ED

(��nu + u�n�) ds (10)

where

jI (u,�) = ∑
E∈EI

�

hE

∫
E
[[un]][[�n]] ds, jD(u, �) = ∑

E∈ED
2

�

hE

∫
E
u� ds (11)

This method simplifies considerably in our case, since the normal components of the velocities
are continuous, that is, [[un]] = 0 and [[�n]] = 0 whenever n is parallel to the x-axis. Therefore,
the jump terms only apply on edges parallel to the x-axis, where, on the other hand, the normal
derivatives of u and � are zero. The same holds on the boundary due to the strong enforcement
of u · n= 0. Consequently,

ah(u,�) =∑
Ti j

∫
Ti j

∇u · ∇� dx + jI (u, �) + jD(u, �) (12)

=∑
Ti j

∫
Ti j

∇u · ∇� dx + j xI (u, �) + j xD(u, �) (13)

where the superscript x on the second line indicates that the sum is restricted to edges parallel to
the x-axis. In particular, since the indefinite part of the flux is missing, this bilinear form is stable
for all positive values of � (refer to, e.g. [15] or the proof for the modified form below).

4. THE STENCIL OF THE DG METHOD AND ITS RELATION TO THE MAC SCHEME

In this section, we compute the finite difference stencils associated with the discontinuous Galerkin
method of the previous section. In order to do so, we compute rows of the resulting matrix by
applying the bilinear forms to single basis functions as test functions.

4.1. Interior nodes

First, using the basis function qi j , which is one on Ti j and zero elsewhere in the continuity
Equation (8) yields

bh(u, qi j ) =
∫
Ti j

∇ · u= h2
(
ui+1/2, j − ui−1/2, j

h
+ vi, j+1/2 − ui, j−1/2

h

)
= h2∇h · ui j (14)
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946 G. KANSCHAT

Now, choose � in (9) such that its first component is one at xi+1/2, j and zero in all other
support points to obtain the discrete derivative of p in the x-direction from (9):

bh(�i+1/2, j , p) = h(pi j − pi+1, j ) = h2�hx pi+1/2, j (15)

The same way, we obtain

bh(�i, j+1/2, p) = h(pi j − pi, j+1) = h2�hy pi, j+1/2 (16)

Thus, the divergence and gradient operators of the DG method and the MAC scheme coincide up
to a factor of h2.

Let us now compute the stencil for the form ah(·, ·) in (12) for the test function �i+1/2, j with
support point xi+1/2, j and consider interior cells only:

ah(u,�i+1/2, j ) =
∫
Ti j

ui+1/2, j − ui−1/2, j

h2
dx −

∫
Ti+1, j

ui+3/2, j − ui+1/2, j

h2
dx

+
∫ xi+3/2

xi+1/2

�

h
(�hyyui+3/2, j�

+
i+1(x) + �hyyui+1/2, j�

−
i+1(x))�

−
i+1(x) dx

+
∫ xi+1/2

xi−1/2

�

h
(�hyyui+1/2, j�

+
i (x) + �hyyui−1/2, j�

−
i (x))�+

i (x) dx

= h2(�hxxui+1/2, j + ��hyyui+1/2, j + �
6�hyyui−1/2, j + �

6�hyyui+3/2, j ) (17)

This yields the difference stencil

⎡
⎢⎢⎢⎢⎢⎣

−�

6
−� −�

6
�

3
− 1 2 + 2�

�

3
− 1

−�

6
−� −�

6

⎤
⎥⎥⎥⎥⎥⎦

We will now apply a modification to the edge terms of ah(·, ·), such that the modified form
is still stable, but the couplings to points offset diagonally vanish. To this end, we introduce the
second-order Legendre polynomial on [ti−1/2, ti+1/2], namely

�(t − ti−1/2) = 6h2t2 − 6ht + 1

h

and modify the jump term in (11) to

j̃I (u,�) = ∑
E∈EI

�

hE

∫
E

� + �E

�
[[un]][[�n]] ds (18)
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where �E is the corresponding quadratic Legendre polynomial on the edge E . We choose � to
eliminate the cross coupling term:∫ ti+1/2

ti−1/2

�E (t)�+
i (t)�−

i (t) dt = h
∫ 1

0
(6t2 − 6t + 1)t (1 − t) dt = − h

30

∫ ti+1/2

ti−1/2

�+
i (t)�−

i (t) dt = h

6

Therefore, � = 1
5 yields

∫ ti+1/2

ti−1/2

� + �E

�
�+(t)�−(t) dt = 0 (19)

The modified jump still defines a seminorm.

Lemma 4.1
The term

j̃ EI =
∫
E

� + �

�
[[un]]2 ds (20)

is nonnegative and it is zero if and only if u is continuous along E .

Proof
The jump of u is linear functions along E and can be written as

[[u(x)n]]= a�+(x) + b�−(x)

with suitable coefficients a and b. Then,

J̃ E
I = h

∫ 1

0

� + �(t)

�
(a2�+(t)2 + b2�−(t)2 + 2ab�+(t)�−(t)) dt

= h
∫ 1

0

� + �(t)

�
(a2�+(t)2 + b2�−(t)2) dt

because of the choice of � and �. We have∫ 1

0
�(t)�+(t)2 dt = 1

30
=
∫ 1

0
�(t)�−(t)2 dt

Accordingly,

j̃ EI = 7h

6
(a2 + b2)

which is zero only if a and b are zero. �
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We introduce the modified boundary form

j̃D(u,�) = 2
∑

E∈ED

�

hE

∫
E

� + �

�
u� ds (21)

By the same means as in the proof to the previous lemma, we obtain that j̃D(u, u) = 0 if and only
if u = 0 on ��. Therefore, we have the following lemma.

Lemma 4.2
The bilinear form

ãh(u,�) =∑
Ti j

∫
Ti j

∇u · ∇� dx + j̃I (u, �) + j̃D(u, �) (22)

is a positive definite, symmetric bilinear form on the space Vh with respect to the norm ‖ · ‖h =√
ãh(·, ·) for any �>0.

Proof
Positive semi-definiteness and symmetry follow immediately from the definition of the form. The
definiteness follows from the fact that if ãh(u, u) = 0, the jump jI (u, u) enforces continuity, the
boundary term jD(u, u) enforces homogeneous boundary conditions and the cell terms require
that u is constant (for details see, e.g. [15]). �

Thus, the modified interior penalty formulation yields a stable DG finite element method with
respect to the norm ‖ · ‖h =√ãh(·, ·) and the analysis for the standard interior penalty method
applies. Inserting expressions (20) and (19) for modified jumps into (17), we obtain the stencil

⎡
⎢⎢⎣

− 7
6�

−1 2 + 14
6 � −1

− 7
6�

⎤
⎥⎥⎦

which for �= 6
7 yields the five-point stencil used in the original MAC scheme in [3].

4.2. Boundary conditions

In order to yield strongly divergence-free solutions, the CKS method requires that u · n= 0 on the
boundary. This is nothing but the condition that the boundary nodes of the MAC scheme are set
to zero.

The boundary condition for the tangential component is obtained in [3] by mirroring the value
in the interior. Thus, we extend the mesh virtually by one layer of cells at each of the sides of
the square. For instance, at the left boundary, we would add a layer of support points for v at
(t0, t j−1/2) and let v0, j−1/2 =−v1, j−1/2. Entering these values into the numerical flux (20) now
yields exactly the boundary flux (21), which proves that the two formulations are algebraically
equivalent at the boundary as well.
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5. CONVERGENCE OF THE LOWEST ORDER DG SCHEME

The convergence analysis of the CKS scheme involves standard energy error arguments in finite
element analysis. A key ingredient there is an interpolation estimate of the form

‖∇u − ∇ Ihu‖T�Chk‖∇2u‖T
where Ih is the interpolation operator into RTk , h is the mesh size and k is the degree of the
Raviart–Thomas element. This degree in our case is zero, such that this estimate is of no use.
Even more, since the derivative of the RT0 element in one space direction is always zero, no
approximation in a norm involving the gradient can be achieved and, therefore, standard finite
element convergence analysis fails.

Nevertheless, the interpolation estimate in L2 reads

‖u − Ihu‖T�Ch‖∇2u‖T (23)

and we use it to obtain the following theorem.

Theorem 5.1
The solution obtained by the CKS method using lowest order Raviart–Thomas elements and
piecewise constant pressures on uniform meshes admits the error estimates

‖u − uh‖�Ch(‖∇2u‖ + ‖∇ p‖) (24)

‖p − ph‖�Ch(‖∇2u‖ + ‖∇ p‖) (25)

Proof
We employ the fact that the CKS method is algebraically equivalent to the MAC scheme, and,
therefore, to the finite element scheme by Han and Wu. Therefore, the solution uHW coincides
with uh in the support points of the RT0 element in Figure 1. Using the triangle inequality, we get

‖u − uh‖�‖u − Ihu‖ + ‖Ihu − IhuHW‖ + ‖IhuHW − uh‖
Here, the first term is estimated by the interpolation estimate (24). The last term vanishes, since the
values of uh and uHW coincide in the support points because of the equivalence of both schemes
with the MAC scheme. The second term is of order h2 by (6), taking into account that the support
of all basis functions has the same size. Since the pressure space is the same as in [7], estimate
(25) follows immediately their work. �

6. CONCLUSIONS

With a minor modification, we showed that the CKS scheme is algebraically equivalent to the MAC
scheme. The modified scheme is still a consistent discontinuous Galerkin scheme. Therefore, it will
enable us to develop a posteriori error estimates based on Galerkin orthogonality. Furthermore,
it defines a pointwise divergence-free interpolation for the point values obtained by the MAC
scheme. On the other hand, we could employ the convergence result for the MAC scheme to show
first-order convergence of the lowest order CKS scheme. Finally, the CKS scheme in higher orders
by the result in this article can be seen as a natural extension of the MAC scheme.
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